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I. SUMMARY 

The results of the detailed design of the tandem blade configuration 
turbine for Task III of NASA Contract NAS3-14304 are presented. The three- 
stage constant-inside-diameter turbine utilizes tandem blading in the stage 
two and stage three vanes and in the stage three blades. All other bladerows 
use plain blading. The tandem blading philosophy is descrfbed. The effects 
of axial and tangential spacing of the forward tandem airfoils relative to 
the aft tandem airfoils are discussed. Vane and blade profile design is dis- 
cussed and detailed blading design data are summarized. Steady state stresses, 
vibratory behavior and vibratory stability are predicted. The fabrication and 
testing of a laboratory bench model of the stage three tandem blade is dis- 
cussed, and the results of the testing are applied to the mechanical design 
analysis. 



II. INTRODUCTION 

The development of high-bypass-ratio turbofan engines for future air- 
craft propulsion schemes requires the development of fan drive turbines with 
increasingly higher work output. The requirements of minimized weight and 
size of such turbofan engines produce a need for turbines with increasingly 
high stage loading. In order to maintain high turbine efficiencies at high 
stage loading, advances are required in the technology of producing increased 
aerodynamic load capability in turbine blading by means of improved design 
techniques and high-lift devices. 

The specific'objectives of this program are to: 

0 Investigate analytically and experimentally aerodynamic means 
for increasing the turbine stage loading and turbine blade load- 
ing consistent with high efficiency for multistage high loaded 
fan drive turbine configurations. 

0 Develop sufficient &sign information to determine the relative 
importance of changes in engine size, weight, and performance 
and give primary consideration to use of tandem rotors and 
stators, where applicable, to reduce weight or extend or improve 
the blading performance. 

l Modify an existing three-stage highly loaded turbine rig and 
adapt the rig to an overall performance test program of sufficient 
extent so as to obtain blade element performance. 

This is a 24-month analytical and experimental investigation program to 
provide a turbine high-stage-loading and high-blade-loading aerodynamic 
technology that will be specifically applicable to multistage fan drive 
turbine configurations for advanced high-bypass-ratio turbofan propulsion 
system application. The program will be divided into two phases encompassing 
nine task items of activity. 

The first phase will cover Task Items I, II and III of the program which 
are to investigate requirements of selected advanced high-bypass-ratio turbo- 
fan systems, to carry out parametric turbine vector diagram studies, to con- 
duct a cascade test and evaluation program, to select one design for future 
study, to complete a detailed aerodynamic turbine design for an existing rig, 
to complete the detailed blading aerodynamic design for the rig, to perform 
detailed blading mechanical design for the rig, to perform the turbine rig 
mechanical design, and to prepare the turbine rig modification drawings 
required to utilize the existing three-stage highly-loaded-fan turbine rig. 
The second phase will cover Task Items IV through IX of this program 
to fabricate, procure, vibration bench test, fatigue endurance test, and 
inspect the turbine rig modifications; to instrument and calibrate the rig 



vehicle; to conduct a test program and to report progress, analysis, and 
design, as well as test and performance results. 

The Task I vector diagram study results have been reported (Reference 1). 
Based on the results of this study, a velocity diagram was chosen for three 
highly-loaded turbine configurations: (1) a turbine using plain blades, 
(2) a turbine using tandem blades and (3) another turbine using high lift 
devices. The purpose of this report is to present the Task III detailed 
design of the turbine using tandem blades. 
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III. PRELIMINARY DESIGN 

A. REQUIREMENTS 

The design requirements for the turbines to be studied were based 
on engine fan drive turbine requirements. An existing three stage highly 
loaded fan drive turbine rotating rig was modified for the test and 
performance phase of this program. Scaling of the turbine to utilize 
the existing facility was discussed in Reference 2, and the full size 
and scaled turbine requirements are repeated here. 

Parameter Full Size Scaled 

Average Pitch Loading, 2cu &LA!!2 

Equivalent Specific Work, $Ocr, (Btu/lbm) 

Equivalent Rotative Speed, N/qr, (rev/min) 

Equivalent Weight Flow, WC E/B, (lbm/sec) 

Inlet Swirl Angle (degrees) 

Exit Swirl Angle Without Guide Vanes (degrees) 

Maximum Tip Diameter (inches) 

Number of Stages 

Wq/PT at Inlet 

Ah/TT 

1.5 

33.0 

2000 

70 

0 

25 

45.0 

3 

108.4 

.0635 

87.7 

1.5 

33.0 

3169 

28 

0 

<5 - 

28.4 

3 

43.16 

.0635 

138.98 

On the basis of these design requirements, a velocity diagram was 
chosen to be used in the design of all three turbines. The selection of 
this velocity diagram was discussed in Reference 1, and the final velocity 
diagram calculation results were presented in Reference 2. 

B. DESIGN PHILOSOPHY 

Study of the velocity diagram calculation results indicated that the 
stage two vane, stage three vane, and stage three blade were the bladerows 
most likely to benefit from the use of tandem blading. Stage two and stage 
three vanes have high turning requirements because of the high interstage 
swirl angles obtained from the velocity diagram calculations, and the 
stage three blade has a negative reaction hub. Therefore, the tandem 

4 



B. DESIGN PHILOSOPHY (Concluded) 

blade turbine was comprised of tandem blading in the above mentioned 
bladerows, and the plain blade hardware described in Reference 2 in all 
other bladerows. 

Studies were conducted to determine the effects of axial and tangential 
spacing of the forward tandem airfoil sections with respect to the aft tan- 
dem airfoil sections. These studies were made using a General Electric 
potential flow two-cascade computer program. Figures 1 and 2 show typical 
effects of tangential and axial spacing for a negative reaction rotor 
section. The amount of surface diffusion is significantly reduced when 
the leading edge of the aft blade is located near the trailing edge 
pressure side of the forward blade. After studying these results, the 
tandem blading was designed by designing the forward and aft airfoil 
sections to prescribed velocity distributions as individual cascades, 
followed by the performance of the two-cascade computer analysis of the 
airfoils in tandem configuration to obtain the final results. 

Since it was desired to replace the plain blade hardware with tandem 
blading in the three bladerows mentioned above, the turbine aerodynamic 
flowpath was maintained. Thus, the tandem airfoil pairs were designed 
to the axial widths of the plain blades. 

In the design of the tandem airfoils, the same total throat area 
as had been used in the plain blade design was maintained. Solidities 
of the forward airfoils were selected using criteria established in 
Reference 3. Solidities of 1.0 and diffusion factors of 0.5 were 
selected, and the turning of the forward airfoils was determined. The 
forward airfoil was treated as a high-turning compressor airfoil, and 
the remaining design parameters were obtained by using the data presented 
in Chapter VI of Reference 3. The aft airfoils were designed, using 
turbine criteria, to do the remaining turning required in each bladerow. 
The airfoil shapes were designed such that when in the tandem configuration, 
a converging passage was obtained between the forward airfoil pressure 
side and the aft airfoil suction side. 

In the design of the tandem blading, the objective was to improve 
the overall velocity distributions relative to the velocity distributions 
of the plain blading. With the above constraints in mind and a design 
philosophy established, the detailed aerodynamic design was begun. 



IV. DETAILED AERODYNAMIC DESIGN 

A. SELECTION OF NUMBER OF VANES AND BLADES 

Vane and blade solidities were determined through selection of 
Zweifel numbers based on General Electric design experience using the 
Zweifel loading criteria. The number of vanes and blades was the 
same as had been used in the plain blade turbine of Reference 2, with the 
exception of the stage three stator. Since the vector diagram require- 
ments of the stage two and stage three stator are similar (the inlet 
and exit angles of the bladerow are similar), little additional knowledge 
could be expected from testing two very similar tandem stators. By 
designing and testing a reduced solidity tandem stator in stage three, 
additional knowledge about the performance of tandem blading could be 
gained. 

A twenty-four percent solidity was chosen for the stage three 
tandem stator, and analysis showed that a satisfactory velocity distri- 
bution around the airfoils could still be obtained. The twenty-four 
percent reduction in solidity was accomplished by holding nd constant 
(n is the number of vanes, and d is the throat dimension as'defined 
in Figure 3). Thus, the total &r-oat area of the stator remained 
constant. The aerodynamic flowpath showing the number of vanes and 
blades is presented in Figure 4. 

B. BLADING PROFILE DESIGN 

The tandem blading forward and aft airfoils were designed separately 
using a computer program in which the hub, pitch, and tip section 
coordinates are developed from a small number of numerical inputs. The 
axial width of each forward and aft airfoil section was selected on the 
basis of the knowledge gained in the preliminary design studies. An 
analysis of flow conditions through each forward and aft section passage 
was conducted using a potential flow cascade analysis computer program. 
Design iterations on the forward and aft section profiles were made until 
satisfactory velocity distributions around each profile were obtained. 
Forward and aft airfoil sections were paired and the two-cascade computer 
program was used to determine the velocity distributions around the pairs. 
Figures 5 through 20 show the final tandem airfoil section flowpaths 
and the velocity distributions around each tandem pair compared to the 
velocity distributions around the comparable plain blade sections. In 
the preliminary design, it was apparent that the stage three rotor plain 
blade tip had a good velocity distribution, and not much benefit would be 
obtained from a tandem tip section. Thus, it was decided to design the 
tip section with the forward and aft airfoils touching in such a manner 
that when assembled, the tip section in the tandem configuration would 
nearly conform to the outline of the plain blade tip section. Therefore, 
no tandem velocity distribution is shown for this section; however, 
Figure 21 shows the tandem blade tip section compared with the plain blade 
tip section. 

6 



A summary of the tandem vane and blade design data is presented in 
Tables I through III. The parameters used in the summary are defined 
in Figure 3. 

C. STACKING 

The tandem vane sections were stacked on an axis through the trailing 
edge of the aft airfoil. The tandem blade hub and tip sections were 
stacked on an axis through the center of gravity of each tandem pair. 
The pitch section was positioned such that the passage throat between 
the forward airfoil pressure side and aft airfoil suction side was 
linear from hub to tip. 

A computer program was employed to generate the coordinates of the 
sections intermediate to the hub, pitch, and tip. Sections were inter- 
polated at lo%, 30%, 70% and 90% of the aft airfoil trailing edge height 
for each vane and blade. These coordinates were then used to generate 
the precision masters required for the fabrication of the vanes and 
blades. Precision masters for each forward and aft airfoil were generated 
separately for clarity in fabrication, and reduced copies of these 
drawings are presented in Figures 22 through 27. Figures 28 through 33 
show the stacked forward and aft airfoil sections for each bladerow. 

7 



V. MECHANICAL DESIGN 

A. OVERALL APPROACH 

In the initial analysis of the stage three tandem blade, the 
forward and aft airfoils were treated as though they were separate 
blades, each mounted on a relatively massive shank, and under a shroud 
whose proportionate size was based on the individual airfoil tip 
areas and on the total shroud volume. The initial results of the 
vibratory behavior and dynamic stability studies indicated a 
substantial instability of the forward airfoil in its separate 
blade configuration, and thus a need for a pin or "snubber" 
between the forward and aft airfoils was established. A pin design 
was chosen and studies were conducted to determine the behavior of 
the forward and aft airfoils in the "pinned" tandem configuration. 

To provide a means by which a portion of the complex tandem 
blade behavior might be understood and to provide direction to the 
overall analytical efforts, a bench model of the tandem blade con- 
figuration was constructed, and its behavior was studied. 

B. LABORATORY BENCH MODEL OF TANDEM BLADE 

The tandem blade bench model was fabricated from two AISI 403 
Stainless Steel low pressure turbine blades which had been designed 
for a previous air turbine. The model was constructed to be geometri- 
cally similar to the actual design. The chord lengths, airfoil 
twists , tip shroud mass, and the position of the forward airfoil 
relative to the aft airfoil were essentially correct. Every effort 
was made to hold other variables such as thickness and camber consistent 
with the actual tandem blade design values. 

The model was used to study the various modes of vibration of the 
forward and aft airfoils, and of the tandem blade as a system. After 
testing of the unpinned configuration was completed, a pin was added 
to join the forward and aft airfoils at the point of maximum vibratory 
amplitude, and the testing program was repeated. Photographs of the 
laboratory bench model in the unpinned configuration are shown in Figures 
34 and 35. 

The importance of the model lies not in the actual numerical 
results obtained, but rather in the fact that the general vibratory 
characteristics of the model will be present in the actual 
design, and that the relative behavior of the pinned to unpinned 
configurations should also remain constant. 



C. VIBRATORY BEHAVIOR 

1. Aft Airfoil 

The aft airfoil, including its proportionate shroud weight, 
is substantially more massive than the forward airfoil. Because 
of this relative massiveness, one set of possible blade frequencies 
can be obtained by treating the aft airfoil as though it acted 
independently of the forward airfoil. The frequencies obtained 
using this approach will differ somewhat from the actual tandem 
blade frequencies since the forward airfoil adds cross-sectional 
stiffness over the entire blade length. 

From the analytical efforts conducted on the three stage 
plain blade configuration (Reference 21, it was determined that 
four sets of boundary conditions could adequately approximate the 
most probable modes of vibration. These boundary conditions are 
described as follows: 

a. 

b. 

C. 

d. 

set 
and 

Cantilevered Mode - Cantilevered at the base of the shank, 
free at the tip shroud. This condition was used to deter- 
mine the amount of steady-state tip shroud twist or untwist 
and to obtain lower bounds on certain resonant frequencies. 

Out-of-Phase Mode - Fixed at the base of the shank, pinned 
at the tip shroud. The flexure and torsional natural fre- 
quencies obtained for these conditions will probably exist 
under operating conditions. 

Wheel Mode - Fixed at the base of the shank, restrained at 
the tip shroud in all directions except axially. Simulates 
blade behavior in a coupled disc-blade mode. The flexure, 
axial, and torsional natural frequencies obtained for these 
conditions will probably exist under operating conditions. 

Free Slip Mode - Fixed at the base of the shank, adjacent 
tip shrouds allowed to slip relative to each other. The 
axial and torsional natural frequencies obtained for these 
conditions may exist during turbine operation. Steady- state 
stresses obtained for this set of conditions are probably 
the most realistic. 

The results of the above four conditions were reduced to a 
of "Most Probable Frequencies of Vibration" for the aft airfoil 
are tabulated below and shown in Figure 36. The most probable 

frequencies of vibration represent frequencies at the design speed, 
and small differences resulting from the various boundary conditions 
have been averaged out. 
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Most Probable Frequencies of Vibration - Unpinned Aft Airfoil 

Mode of Blade 
Vibration Frequency (Hz) 

Boundary Conditions Used 
to Obtain Frequencies 

First axial 385 
First flexure 839 
Second flexure 1646 
First torsional 2355 
Third flexure 3458 
Second axial 4598 
Second torsional 4613 

d 
bc' c 
b; c 
b, c, d 
b, c 

d 
:: c, d 

2. Forward Airfoil 

As was stated above, the aft airfoil is substantially more 
massive than the forward airfoil. Thus, two general modes of forward 
airfoil vibration were considered: 

a. Forward Airfoil Acting Independently 

Because of the large total shank and shroud mass relative to the 
mass of the forward airfoil, fixed root and fixed tip boundary 
conditions yield an array of frequencies which are likely to 
occur during actual turbine operation. The results of the . analysis, performed at the design conditions are presented in 
Figure 37 and tabulated below. 

Most Probable Frequencies of Vibration 
Unpinned Forward Airfoil Acting Independently 

Mode of Blade Vibration Frequency (HZ) 

First flexure 
Second flexure 
Third flexure 
First .torsional 
First axial 
Approximate frequencies for 
higher modes of 
vibration within range 
of interest 

817 
1440 
2773 
3285 
3570 
4483 
4542 
4635 
4749 
4759 

Because of the relatively small size of the forward airfoil 
compared to the aft, it is difficult to expect, at least to 
a first approximation, any other boundary conditions under 
which the forward airfoil could act independently of the aft 
airfoil. 

10 



b. Forward Airfoil Driven by Aft Airfoil -- 

Since the aft airfoil is quite large relative to the forward 
airfoil, it is possible that the forward airfoil will be 
driven by the aft at the aft airfoil resonant frequencies. 
This was demonstrated in the testing of the laboratory bench 
model described above. This behavior gives another array 
of probable forward blade frequencies which are the same as the 
aft airfoil frequencies tabulated above. 

3. Pinned Airfoil 

The rather substantial calculated instability of the forward 
airfoil in the separate airfoil configuration led to the conclusion 
that a pin or snubber connecting the forward and aft airfoils near 
the point of maximum vibratory amplitude was necessary to insure 
the dynamic stability of the tandem blade under air turbine con- 
ditions. The method used to join the two airfoils was a design 
with "half-pins" which would be machined onto the airfoils during 
manufacture and welded together at assembly. The pinned config- 
uration is shown in Figure 38. 

Many of the conclusions concerning vibratory behavior have been 
based on results of the unpinned blade analysis in conjunction with 
laboratory testing of the bench model with the pin added. It was 
judged that because the pin reduced the effective length of the 
forward airfoil by about one-half, most of the forward airfoil 
resonant frequencies will bymoved beyond nozzle passing frequency, 
and thus out of the region of concern. It is estimated that only 
three or four frequencies will remain within the region of interest. 
This substantially reduces the possibility of a resonance problem 
within the operating range. For the aft airfoil, little deviation 
from the frequencies listed above is expected due to the large mass 
and stiffness of the aft airfoil as compared to that of the forward 
airfoil. 

D. VIBRATORY STABILITY 

During the early stages of the tandem blade design, it was recognized 
that the configuration, particularly the forward airfoil, might be 
dynamically unstable. Analytical efforts were conducted to determine the 
presence of any instabilities. The stability criteria employed throughout 
these efforts were based on the "reduced velocity parameters" described 
below. 

Vr andV =- h $1 (fh) 

11 



where: 

'r = airfoil inlet or exit (depending upon the configuration) 
relative gas stream velocity, 

C = chord length, 

fa = first torsional frequency, 

fh = first flexure frequency, 

and where V, and c are measured at 50% blade length when fixed root and 
fixed tip boundary conditions are used, 60% span for the fixed root and 
shrouded tip boundary conditions, and 87.5% span for fixed root and free 
tip boundary conditions. 

General Electric design experience established the following vibratory 
stability criteria: 

Turbine blades - 
and V 

considered to be dynamically stable for Vcr < 3.0 
h < 9.0 when Vr is the exit relative velocity. 

Compressor blades - 
and Vh 

considered to be dynamically stable for Vo < 1.2 
< 3.6 when Vr is the inlet relative velocity. 

These criteria were applied to the tandem configuration turbine analysis. 

1. Aft Airfoil 

The turbine criteria were applied to the aft airfoil since its 
shape and position relative to the gas stream are not unlike that of 
a typical turbine blade. These results were obtained for fixed root- 
fixed tip boundary conditions: 

Ve = 1.29 and Vh = 3.62 

This indicated a rather substantial margin of vibratory stability. 
These results were verified by the laboratory testing of the bench 
model. 

2. Forward Airfoil 

Since the forward airfoil was treated as a compressor blade 
during the aerodynamic design, its shape, loading, and position 
relative to the gas stream are similar to that of a typical com- 
pressor blade. Thus, it was decided that the vibratory stability 
criteria for compressor blades should be applied to the forward 
airfoil. These results were obtained for fixed root-fixed tip 
boundary conditions: 

Vo = 2.04 and Vh = 5.87 
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This indicated substantial vibratory instability, and a need for 
a pin or snubber between the airfoils. These results were supported 
by the vibratory behavior demonstrated by the laboratory model. 

3. Pinned Tandem Airfoil 

The vibratory frequencies required for the calculation of the 
reduced velocity parameters were obtained through testing of the 
laboratory model. The calculated frequencies for the unpinned air- 
foil were multiplied by the ratio of the experimental pinned airfoil 
frequencies to the experimental unpinned airfoil frequencies. The 
reduced velocity parameters for the forward airfoil were then cal- 
culated to be: 

va = 1.07 and Vh = 1.46 

This indicated that the pinned tandem blade forward airfoil was 
stable. The aft airfoil stability parameters remained essentially 
the same as those calculated for the unpinned configuration since 
the frequencies for the aft airfoil were not significantly altered 
by the addition of the pin. The tandem blade pinned configuration 
should be dynamically stable in the air turbine environment. 

E. STEADY-STATE BEHAVIOR 

Steady-state mechanical stresses were calculated for the free slip 
tip shroud boundary conditions for the aft airfoil. The fixed root-fixed 
tip boundary conditions were used for the forward airfoil. These con- 
ditions were believed to be the most realistic for steady-state operation. 
The stresses were quite low for both the forward and aft airfoils in the 
unpinned configuration. The results of the analysis are presented in 
Table IV. Steady-state stresses should be even lower in the pinned 
configuration. Bending stresses in the region of the pin will increase, 
but an adequate margin of safety will be maintained. The stress concen- 
tration due to the presence of the pin should not be of major concern 
because of the low stress field in this region. 

F. KEY DETAIL DRAWINGS 

The mechanical design flowpath for the air turbine test rig is 
shown in Figure 39. The detail drawings used for the assembly of 
the test rig are listed in Table V. 
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TABLE I. STAGE TWO TANDEM VANE DESIGN DATA 

Hub Pitch 

17.8 21.455 

49.4 44.4 

61.4 58.5 

Tip 

25.11 

43.4 

58.2 

Parameter 

Diameter (trailing edge, in.) 

a o, (degrees 1 
a 1, (degrees) 

\y Zwei, incompressible 

Aw, (in.) 

Awf, (in.1 

Awa, (in.1 

t, (in.1 
n 

ndo (Cf = .975, r+, = .97) 

d 
0 

= ndo/n. (in.) 

t 
ef' 

(in. 1 

te ' (in. > 
a 

.777 

.91 

.458 

.550 

.518 

.757 

1.175 

.570 

.736 

.624 

108 

36.07 

.730 

1.44 

.676 

.920 

.730 

27.43 42.55 

.254 .334 .394 

.020 .020 .020 

.020 .020 .020 

te /be + doI 
a a 

.073 .057 .048 

Chord f, (in.) 

Chord a, (in.) 

t max.f' (in*) 
t max.a' (in.) 

d i, (in.1 

Axial overlap, (in.) 

Wedge angle f, (degrees) 

Wedge angle a, (degrees) 

Unguided turning, (degrees) 

Overturning, (degrees) 

.531 .632 .736 

.694 .910 1.136 

.056 .064 .073 

.066 .076 .085 

.052 .066 .074 

.093 .119 ,146 

7.1 6.0 8.3 

5.1 4.8 3.5 

1.8 11.9 9.8 

3.1 2.4 2.5 
Precision Master Numbers: Forward Vane: 4012241-962 

Aft Vane : 4012241-964 
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TABLE II. STAGE THREE TANDEM VANE DESIGN DATA 

Parameter 

Diameter (trailing edge, in.) 

Hub 

17.8 

Pitch 

22.61 

a o, (degrees > 
al, (degrees) 

I Zwei, incompressible 

Aw, (in.) 

Awf, (in.> 

Awa, (in. > 

t, (in.> 

n 

ndo (Cf = .975, nv = .97) 

do = ndo/n, (in.) 

t 
ef 

, (in.1 

te ' (in.1 
a 

te / (te + doI 
a a 

Chord f, (in.) 

Chord a, (in.) 

t max,f, (in.> 
t 

OBX.,’ 
(in.1 

di, (in.1 

Axial overlap, (in.) 

Wedge angle f, (degrees) 

Wedge angle a, (degrees) 

Unguided turning, (degrees) 

Overturning, (degrees) 

Precision Master Numbers 

46.1 39.7 

57.0 52.2 

1.132 1.157 

1.0 1.3 

.492 .661 

.620 .846 

.736 .934 

76 

31.2 44.5 

.410 .586 

.020 .020 

.020 .020 

.046 ,033 

.552 .699 

.779 ,984 

.056 .074 

.071 .090 

.076 .086 

.113 .160 

5.6 7.7 

7.5 6.8 

18 12.8 

6.9 6.9 

Forward Vane: 4012241-966 

Aft Vane : 4012241-968 

Tip 

27.42 

38.0 

51.7 

1.121 

1.6 

.829 

.987 

1.133 

54.6 

.719 

.020 

.020 

.027 

.856 

1.220 

.094 

.llO 

.113 

.213 

7.8 

6.2 

13.0 

5.0 
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TABLE III. STAGE THREE TANDEM BLADE DESIGN DATA 

Parameter Hub 

Diameter (trailing edge, in.) 17.8 

lil , (degrees) 

B2, (degrees > 

Y Zwei, incompressible 

Aw, (in.) 

Awf, (in.1 

Awa, (in.) 

t, (in.1 
n 

ndo (Cf = .97, nB = .95) 

do = ndo/n, (in.) 

t 
ef' 

(in.1 

te ' (in.1 

tea/ be + doI 
a a 

Chord f, (in.> 

Chord a, (in.) 

t 
llMX. 

, (in.1 
f 

t max. , (in.1 
a 

di’ (in.) 

Axial overlap, (in.) 

Wedge angle f, (degrees) 

Wedge angle a, (degrees) 

Unguided turning, (degrees) 

Overturning, (degrees) 

Precision Master Numbers 

45.5 

35.3 

.937 

1.22 

.498 

,843 

.499 

Pitch 

23.1 

27.1 

41.6 

1.001 

1.05 

.438 

.730 

.648 

112 

55.10 

.492 

.020 

.020 

.039 

Tip 

28.4 

5.6 

58.1 

.919 

.88 

.378 

.612 

.797 

46.26 

.413 

.020 

.020 

.046 

47.82 

.427 

.020 

.020 

.045 

.572 .456 .380 

.848 .782 .896 

.060 .057 .056 

.079 .067 .055 

,074 .038 0 

.115 .lll .098 

7.8 8.5 10.2 

8.5 6.2 2.8 

9.0 8.7 10.6 

-2.4 1.6 3.4 

Forward Blade: 4012241-970 

Aft Blade : 4012241-972 
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TABLE IV. STEADY-STATE MECHANICAL STRESSES AND 
ESTIMATED VIBRATORY CAPABILITIES 

Unpinned Separate Airfoil Analysis 

Mechanical Stresses (ksi) 

Forward Airfoil 
Fixed-Fixed 
Boundary Condition 

Airfoil Hub 

u centrifugal 9.87 10.50 
u maximum gas bending 3.46 (TE) 38.80 (LE) 
(5 resultant span wise LE 9.64 49.30 

stress TE 13.33 39.13 
Hi-c 8.36 -13.95 
Midcv 10.64 14.07 

u uncorrected gas bending LE 7.52 44.33 
(lmi and mmi) TE 2.50 37.94 

Hi-c 5.56 -29.66 
Midcv 2.66 4.29 

(T corrected gas bending LE 6.34 26.53 
(lmi and mmi) TE 2.50 22.24 

Hi-c -4.85 -17.60 
Midcv 2.33 2.55 

Under Tip Shroud 

u centrifugal 7.79 7.13 

(5 resultant span wise LE 5.17 6.01 
stress TE 6.75 7.00 

Hi-c 9.84 7.82 
Midcv 6.65 6.89 

Estimated Vibratory Capabilities 

U =U mean c + 'lmi + "mmi (ksi) 

(0 thermal neglected) 

Estimated THLE (OF) 

13.33 (HTE) 49.30 (HLE) 

108 108 

Estimated Minimum Margin 
Vibratory Allowable Stress 

(ksisa) (Based on AISI 17-4 PH 
Stainless Steel average strength 
less three standard deviations) 

68.8 53.9 

Aft Airfoil 
Free Slip 
Boundary Condition 
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TABLE V. KEY DETAIL DRAWING SUMMARY 

Drawing No. 

4013098-116 

-117 

-118 

-119 

-120 

-121 

-124 

-125 

-126 

-127 

-128 

-129 

-130 

-131 

-132 

-133 

-134 

-135 

-136 

-140 NASA HLMSFT Test Assembly, Tandem Blading 

Title 

Hub, Tandem Vane - Stage 2 NASA HLMSFI 

Shroud, Tandem Vane - Stage 2 NASA HLMSFT 

Blade, Turbine - Stage 3F NASA HLMSFT Tandem 

Blade, Turbine - Stage 3A NASA HLMSFT Tandem 

Shroud, Tandem Turbine Blade - Stage 3 
NASA HLMSFT 

Blade Assembly, Turbine - Stage 3 
NASA HLMSFT Tandem 

Airfoil, Turbine Tandem Vane - Stage 2A 
NASA HLMSFT 

Airfoil, Turbine Tandem Vane - Stage 2F 
NASA HLMSFT 

Airfoil, Turbine Tandem Vane - Stage 3A 
NASA HLMSFT 

Airfoil, Turbine Tandem Vane - Stage 3F 
NASA HLMSFT 

Hub, Tandem Vane - Stage 3 NASA HIMSFT 

Shroud, Tandem Vane - Stage 3, NASA BLMSFT 

Vane Assembly, Stage 2 - Tandem NASA HLMSFT 

Vane Assembly, Stage 3 - Tandem NASA IUMSFT 

Disk, Tandem Rotor - Stage 3 NASA HLMSFT 

Retainer, Tandem Blade - Stage 3 NASA HIMSFT 

Ring, Tandem Torque - Stage 3 NASA HLMSFT 

Housing Assembly, Tandem Vane - Stage 2 
NASA HIXSFT 

Housing Assembly, Tandem Vane - Stage 2 
NASA HLMSFT 
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TABLE V. KEY DhTAIL DRAWING SUMMARY (Concluded) 

Precision Master No. 

4012241-962 

-963 

-964 

-965 

-966 

-967 

-968 

-969 

-970 

-971 

-972 

-973 

Title 

Vane, Tandem, Stage 2 Forward 

Stackup, Tandem Vane, Stage 2 Forward 

Vane, Tandem, Stage 2 Aft 

Stackup, Tandem Vane, Stage 2 Aft 

Vane, Tandem, Stage 3 Forward 

Stackup, Tandem Vane, Stage 3 Forward 

Vane, Tandem, Stage 3 Aft 

Stackup, Tandem Vane, Stage 3 Aft 

Blade, Tandem, Stage 3 Forward 

Stackup, Tandem Blade, Stage 3 Forward 

Blade, Tandem, Stage 3 Aft 

Stackup, Tandem Blade, Stage 3 Aft 
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Figure 1. Effect of Tangential Spacing on Velocity Distribution. 
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Figure 3. Design Data Nomenclature, 
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Figure 4. Aerodynamic Flowpath. 
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Figure 7. Stage Two Tandem Vane Pitch Airfoil Flowpath. 

27 

-- 



1.40 

1.20 

1.00 

0.20 

0 

Tandem Vane 
--- Plain Vane 

0 0.10 0.20 0.30 0.40 0.50 0.60 
Normalized Axial Width, X/Aw 

0.70 0.80 0.90 1.00 

Figure 8. Stage Two Vane Pitch Velocity Distribution. 
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Figure 11. Stage Three Tandem Vane Hub Airfoil Flowpath. 
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Figure 17. Stage Three Tandem Blade Hub Airfoil Flowpath. 
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Figure 19. Stage Three Tandem Blade Pitch Airfoil Flowpath. 
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Figure 21. Stage Three Tandem Blade Tip Compared to Stage Three Plain 
Blade Tip. 
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Figure 22. Stage Two Forward Tandem Vane Precision Master (4012241-962). 
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Figure 23. Stage Two Aft Tandem Vane Precision Master (4012241-964). 

43 



c 
\\ F-F 

Y Yl- E-E 

‘:‘--rl 

c-c 

E-8 

‘. A-A 

-.- I-nR-] 
-STACKING POINT G-G 

S.P F-F 

-AR- 

S.R E-E 

.- 
k 

]-nR-l 
S.P D-O 

--. -- pEy 

.-viF! c-c 

-_--. pq 

SP B-B 

S.R A-A 

Figure 24. Stage Three Forward Tandem Vane Precision Master (4012241-966). 
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Figure 25. Stage Three Aft Tandem Vane Precision Master 

(4012241-96s). 
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Figure 26. Stage Three Forward Tandem Blade 
Precision Master (4012241-970). 
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b 
Figure 27. Stage Three Aft Tandem Blade Precision 

Master (4012241-972). 
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Figure 28. Stage Two Forward Tandem Vane Stackup (4012241-963). 
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Figure 29. Stage Two Aft Tandem Vane Stackup (4012241-965). 
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Figure 30. Stage Three Forward Tandem Vane Stackup (4012241-967). 
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Figure 31. Stage Three Aft Tandem Vane Stackup (4012241-969). 
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Figure 32. Stage Three Forward Tandem Blade Stackup (4012241-971). 

52 



-AT P 

STACKING POINT-‘, 

Figure 33. Stage Three Aft Tandem Blade Stackup (4012241-973). 
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Figure 34. Stage Three Tandem Blade Laboratory Bench Model, Suction Surface. 



Figure 35. Stage Three Tandem Blade Laboratory Bench Model, Pressure 
Surface. 
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Figure 36. Most Probable Frequencies of Vibration, Stage Three Tandem 
Blade Aft Airfoil. 
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Figure 37. Most Probable Frequencies of Vibration, Stage Three Tandem 
Blade Forward Airfoil. 
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Figure 38. Stage Three Tandem Blade Pinned Configuration. 
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Figure 39. Mechanical Design Flowpath. 


